Ultra-fine entity typing (UFET) predicts extremely free-formed types (e.g., president, politician) of a given entity mention (e.g., Joe Biden) in context. State-of-the-art (SOTA) methods use the cross-encoder (CE) based architecture. CE concatenates the mention (and its context) with each type and feeds the pairs into a pretrained language model (PLM) to score their relevance. It brings deeper interaction between mention and types to reach better performance but has to perform N (type set size) forward passes to infer types of a single mention. CE is therefore very slow in inference when the type set is large (e.g., N = 10k for UFET). To this end, we propose to perform entity typing in a recall-expand-filter manner. The recall and expand stages prune the large type set and generate K (K is typically less than 256) most relevant type candidates for each mention. At the filter stage, we use a novel model called MCCE to concurrently encode and score these K candidates in only one forward pass to obtain the final type prediction. We investigate different variants of MCCE and extensive experiments show that MCCE under our paradigm reaches SOTA performance on ultra-fine entity typing and is thousands of times faster than the cross-encoder. We also found MCCE is very effective in fine-grained (130 types) and coarse-grained (9 types) entity typing. Our code is available at \url{https://github.com/modelscope/AdaSeq/tree/master/examples/MCCE}.
translated by 谷歌翻译
Prior works on Information Extraction (IE) typically predict different tasks and instances (e.g., event triggers, entities, roles, relations) independently, while neglecting their interactions and leading to model inefficiency. In this work, we introduce a joint IE framework, HighIE, that learns and predicts multiple IE tasks by integrating high-order cross-task and cross-instance dependencies. Specifically, we design two categories of high-order factors: homogeneous factors and heterogeneous factors. Then, these factors are utilized to jointly predict labels of all instances. To address the intractability problem of exact high-order inference, we incorporate a high-order neural decoder that is unfolded from a mean-field variational inference method. The experimental results show that our approach achieves consistent improvements on three IE tasks compared with our baseline and prior work.
translated by 谷歌翻译
Multi-modal named entity recognition (NER) and relation extraction (RE) aim to leverage relevant image information to improve the performance of NER and RE. Most existing efforts largely focused on directly extracting potentially useful information from images (such as pixel-level features, identified objects, and associated captions). However, such extraction processes may not be knowledge aware, resulting in information that may not be highly relevant. In this paper, we propose a novel Multi-modal Retrieval based framework (MoRe). MoRe contains a text retrieval module and an image-based retrieval module, which retrieve related knowledge of the input text and image in the knowledge corpus respectively. Next, the retrieval results are sent to the textual and visual models respectively for predictions. Finally, a Mixture of Experts (MoE) module combines the predictions from the two models to make the final decision. Our experiments show that both our textual model and visual model can achieve state-of-the-art performance on four multi-modal NER datasets and one multi-modal RE dataset. With MoE, the model performance can be further improved and our analysis demonstrates the benefits of integrating both textual and visual cues for such tasks.
translated by 谷歌翻译
Ultra-fine entity typing (UFET) aims to predict a wide range of type phrases that correctly describe the categories of a given entity mention in a sentence. Most recent works infer each entity type independently, ignoring the correlations between types, e.g., when an entity is inferred as a president, it should also be a politician and a leader. To this end, we use an undirected graphical model called pairwise conditional random field (PCRF) to formulate the UFET problem, in which the type variables are not only unarily influenced by the input but also pairwisely relate to all the other type variables. We use various modern backbones for entity typing to compute unary potentials, and derive pairwise potentials from type phrase representations that both capture prior semantic information and facilitate accelerated inference. We use mean-field variational inference for efficient type inference on very large type sets and unfold it as a neural network module to enable end-to-end training. Experiments on UFET show that the Neural-PCRF consistently outperforms its backbones with little cost and results in a competitive performance against cross-encoder based SOTA while being thousands of times faster. We also find Neural- PCRF effective on a widely used fine-grained entity typing dataset with a smaller type set. We pack Neural-PCRF as a network module that can be plugged onto multi-label type classifiers with ease and release it in https://github.com/modelscope/adaseq/tree/master/examples/NPCRF.
translated by 谷歌翻译
Multiconer共享的任务旨在检测在多种语言的简短和低文本设置中,在语义上模棱两可且复杂的命名实体。缺乏上下文使人们对歧义的命名实体的认识充满挑战。为了减轻此问题,我们的团队Damo-NLP提出了一个基于知识的系统,我们在其中建立了基于Wikipedia的多语言知识基础,以向指定的实体识别(NER)模型提供相关的上下文信息。给定输入句子,我们的系统有效地从知识库中检索了相关上下文。然后,将原始输入句子加强此类上下文信息,从而可以捕获明显更好的上下文化令牌表示。我们的系统在Multiconer共享任务中赢得了13个曲目中的10个。
translated by 谷歌翻译
最近,多模态命名实体识别(MNER)引起了很多关注。大多数工作通过从预训练对象检测器获得的区域级视觉表示使用图像信息,并依赖于注意力机制来模拟图像和文本表示之间的交互。然而,难以模拟这种交互,因为图像和文本表示分别在其各自的模态的数据上训练,并且在相同的空间中不对齐。由于文本表示在MNER中取得最重要的作用,在本文中,我们提出了{\ bf i} mage - {\ bf t} ext {\ bf a} lignments(ita)将图像特征对准到文本空间中,这样可以更好地利用基于变压器的预磨削文本嵌入的注意机制。 ITA首先在本地和全局将区域对象标记和图像级标题视为可视上下文,将其与输入文本连接为新的跨模型输入,然后将其送入预训练的文本嵌入模型。这使得预先训练的文本嵌入模型的注意模块更容易模拟两个模态之间的交互,因为它们都在文本空间中表示。 ITA进一步对齐从跨模型输入和文本输入视图预测的输出分布,使得MNER模型可以更实用和鲁棒到图像中的噪声。在我们的实验中,我们表明ITA模型可以在多模态命名实体识别数据集上实现最先进的准确性,即使没有图像信息也是如此。
translated by 谷歌翻译
Recent advances in Named Entity Recognition (NER) show that document-level contexts can significantly improve model performance. In many application scenarios, however, such contexts are not available. In this paper, we propose to find external contexts of a sentence by retrieving and selecting a set of semantically relevant texts through a search engine, with the original sentence as the query. We find empirically that the contextual representations computed on the retrieval-based input view, constructed through the concatenation of a sentence and its external contexts, can achieve significantly improved performance compared to the original input view based only on the sentence. Furthermore, we can improve the model performance of both input views by Cooperative Learning, a training method that encourages the two input views to produce similar contextual representations or output label distributions. Experiments show that our approach can achieve new state-of-the-art performance on 8 NER data sets across 5 domains.
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
Recent studies have shown that using an external Language Model (LM) benefits the end-to-end Automatic Speech Recognition (ASR). However, predicting tokens that appear less frequently in the training set is still quite challenging. The long-tail prediction problems have been widely studied in many applications, but only been addressed by a few studies for ASR and LMs. In this paper, we propose a new memory augmented lookup dictionary based Transformer architecture for LM. The newly introduced lookup dictionary incorporates rich contextual information in training set, which is vital to correctly predict long-tail tokens. With intensive experiments on Chinese and English data sets, our proposed method is proved to outperform the baseline Transformer LM by a great margin on both word/character error rate and tail tokens error rate. This is achieved without impact on the decoding efficiency. Overall, we demonstrate the effectiveness of our proposed method in boosting the ASR decoding performance, especially for long-tail tokens.
translated by 谷歌翻译
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but the quality bar for medical and clinical applications is high. Today, attempts to assess models' clinical knowledge typically rely on automated evaluations on limited benchmarks. There is no standard to evaluate model predictions and reasoning across a breadth of tasks. To address this, we present MultiMedQA, a benchmark combining six existing open question answering datasets spanning professional medical exams, research, and consumer queries; and HealthSearchQA, a new free-response dataset of medical questions searched online. We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias. In addition, we evaluate PaLM (a 540-billion parameter LLM) and its instruction-tuned variant, Flan-PaLM, on MultiMedQA. Using a combination of prompting strategies, Flan-PaLM achieves state-of-the-art accuracy on every MultiMedQA multiple-choice dataset (MedQA, MedMCQA, PubMedQA, MMLU clinical topics), including 67.6% accuracy on MedQA (US Medical License Exam questions), surpassing prior state-of-the-art by over 17%. However, human evaluation reveals key gaps in Flan-PaLM responses. To resolve this we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars. The resulting model, Med-PaLM, performs encouragingly, but remains inferior to clinicians. We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning, suggesting the potential utility of LLMs in medicine. Our human evaluations reveal important limitations of today's models, reinforcing the importance of both evaluation frameworks and method development in creating safe, helpful LLM models for clinical applications.
translated by 谷歌翻译